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Background
Interleukin-18 (IL-18) is a potent immune-stimulating cytokine that 
aligns with effective tumor immunotherapy
Discovered as IFN-γ inducing TH1 polarizing cytokine, IL-18 has many immunological
attributes associated with effective cancer immunotherapy.2 Activation and
expansion of antigen-experienced CD8+ T-cells and NK cells promote key cellular
mediators of direct tumor killing. Amplifying secretion of IFN-γ further supports
development of anti-tumor immune responses. Additional effects, including re-
invigoration of dysfunctional T-cells2 and enhancement of dendritic cell antigen
presentation indicate that IL-18 is poised to impact multiple nodes of the cancer-
immunity cycle in a positive manner for cancer immunotherapy.

IL-18 clinical potential is limited by IL-18 binding protein (IL-18BP) – a 
secreted high-affinity IL-18 decoy receptor
IL-18BP binds to IL-18 and neutralizes interaction with IL-18Rα (Figure 1), thereby down-
regulating the immunological activity of IL-18. Indeed, rapid induction of IL-18BP limited 
the efficacy of recombinant wild-type IL-18 (rIL-18) in clinical trials.3 Thus, we sought to 
overcome the limitations of rIL-18 by applying protein engineering solutions. 

Protein engineering aims to unleash the therapeutic potential of IL-18 
for cancer immunotherapy
 Overcome IL-18 neutralization from IL-18BP by introducing mutations into IL-18

(Figure 1) which negate binding to IL-18BP and retain full IL-18 activity

 Fusion to pharmacokinetic (PK)-enhancing protein scaffolds for half-life extension

Protein Engineering
1. IL-18BP resistance (Figure 1)
By utilizing rational design (computational modeling) and directed evolution (yeast 
display), we introduced mutations into IL-18 and screened for the best mutation 
combinations based on binding assays (IL-18BP) and biological activity (IL-18 reporter 
assays and primary cell IFN-γ secretion assays).

2. Half-life extension
To further enhance the pharmacological properties, IL-18BP-resistant IL-18 variants 
were fused to half-life enhancing protein scaffolds, i.e., Fc and serum albumin (SA) to 
enhance in vivo half-life and exposure.

Figure 2 (A-B). Human variant binding to IL-18BP (A) and potency in the 
presence or absence of 300nM IL-18BP (B)

Figure 5. Pharmacokinetics of human variants in humanized mice. 
PK of Naked IL-18BP resistant Human Tool Variant (green triangle) and 
IL-18BP resistant Human Variant 1 fused to human Fc scaffold (blue 
square) following subcutaneous injection of humanized mice.
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Results
Human variants do not bind IL-18BP, show varied potency, and are 
resistant to IL-18BP suppression
• Human variants do not bind human IL-18BP (Figure 2A – Octet) 
• Human variants show a range of potencies and are resistant to suppression by 300

nM IL-18BP (Figure 2B – PBMC Assay)

Figure 3. Mouse orthologs are resistant to IL-18BP suppression (A) and have 
varied potency (B)

Figure 4. Pharmacokinetics of mouse orthologs fused to MSA (A) and Fc (B) 
scaffolds in wild-type C57BL/6 mice

Conclusions
• IL-18 variants with resistance to high

levels of IL-18BP have been generated,
serving as the foundation of an immune-
oncology approach for cancer therapy

• Fusion of IL-18BP resistant IL-18 variants
to half-life enhancing scaffolds improved
in vivo exposure in preclinical models

• IL-18BP resistant, half-life extended IL-18
variants stimulated durable increases in
IFN-γ and TH1 chemokines in preclinical in
vivo models

• Because IFN-γ signatures correlate with
clinical efficacy of Checkpoint Inhibitor
(CPI) therapy,1 an IL-18 therapeutic may
complement CPI immunotherapy

• IL-18BP resistant, half-life enhanced IL-18
variants show promise for development as
a cancer immunotherapy
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Figure 1. Overlay of ribbon diagrams depicting interaction of IL-18 (green) 
with IL-18Rα (blue) and IL-18Rβ (orange) with the insertion of IL-18BP 
(cyan). Protein engineering for resistance to IL-18BP focused on site II of 
IL-18 (red box) which interacts with IL-18BP and IL-18Rα.  

IL-18BP Binding and In Vitro Bioassays with Primary Cultures of 
Human or Mouse Immune Cells
• IL-18BP binding by Octet Biolayer Interferometry

• Human variants: IFN-γ secreted from IL-18-stimulated human PBMC cultures ±
300nM recombinant human IL-18BP

• Mouse variants:  IFN-γ secreted from IL-18-stimulated mouse splenocyte 
cultures ± 300nM recombinant mouse IL-18BP 

In Vivo Pharmacokinetics of Mouse and Human Variants Fused to 
Fc and Serum Albumin Scaffolds
• Single subcutaneous injection of mouse orthologs in C57BL/6 mice
• Single subcutaneous injection of human variants in immunocompromised mice

“humanized” with human immunocytes (CD34+ stem cells)

Longitudinal Th1/Th2 Serum Cytokine Response to Mouse 
Orthologs
• Single subcutaneous injection of mouse orthologs in C57BL/6 mice followed by

longitudinal collection of plasma for cytokine measurement using a mouse 
TH1/TH2 MSD cytokine panel

Note: hIL18BP tested up to 1µM.

A. Binding to IL-18BP by Octet-BLI

B. Concentration-response curves for human IL-18 variant stimulated 
IFN-γ secretion by human PBMCs cultured in the presence (solid line)
or absence (dashed line) of 300nM IL-18BP.

Mouse orthologs are resistant to IL-18BP and show varied potency 
as “naked” molecules and Fc- or MSA-fusion proteins
• Mouse orthologs are maximally resistant to suppression by mouse IL-18BP
• Mouse orthologs show varied potency when fused to half-life enhancing scaffolds

A. IFN-γ secretion from splenocytes stimulated with wild-type IL-18 and 
IL-18 mouse orthologs in the absence (dark blue) and presence (light
blue) of a high IL-18BP concentration

Figure 3B. Concentration-response curves for mouse ortholog IL-18 
stimulated IFN-γ secretion from cultured splenocytes

Pharmacokinetics of IL-18BP-resistant IL-18 variants fused to serum 
albumin and Fc half-life enhancing scaffolds
• IL-18BP resistant IL-18 variants fused to half-life enhancing scaffolds display 

increased peripheral blood exposure relative to high potency naked IL-18BP-resistant 
tool variants (Figures 4-5). 

• Mouse variants with different potency fused to the same half-life enhancing scaffolds
display distinct peripheral blood exposure (Figure 4A-B). 

• Half-life extension might be the result of both the scaffolds and the affinity between 
IL-18 variants and their receptors

A. Mouse Tool Variant (mTV, blue diamond) and Mouse Ortholog 1 fused
to MSA scaffold (purple triangle) relative to “naked” mTV (green square)

B. Mouse Ortholog 1 (blue triangle) and Mouse Ortholog 2 (cyan 
circle) fused to Fc scaffold relative to “naked” mTV (green square)

Plasma cytokine response after subcutaneous injection of half-life 
enhanced IL-18BP resistant mouse IL-18 variant
• Half-life enhanced mouse variants exhibited more durable plasma IFN-γ (TH1

cytokine) responses relative to a naked mouse variant (Figure 6) following 
subcutaneous administration.

Figure 6. Longitudinal plasma IFN-γ response to mouse ortholog 2 fused to 
Fc scaffold (mO2-Fc, blue) relative to a naked IL-18BP resistant mouse tool 
variant (mTV, green)

Figure 7. Longitudinal TH1 (A) and TH2 (B) serum cytokine levels after a single 
subcutaneous injection of human Variant 1-Fc fusion in humanized mice

A. Durable TH1 cytokine response after subcutaneous injection of
human Variant 1-Fc fusion in humanized mice

B. Minimal serum TH2 cytokine response after subcutaneous injection
of human Variant 1-Fc fusion in humanized mice

Methods
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Take Away
• Half-life enhanced IL-18 variants with

resistance to IL-18BP neutralization
demonstrate a durable IFN-γ and TH1
cytokine response in preclinical models,
showing promise as a potential cancer
immunotherapy

• A balance of potency and PK
enhancement is being pursued to
develop a best-in-class IL-18-based
therapeutic
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Longitudinal Th1/Th2 Serum Cytokine Response to Human Variants
• Single subcutaneous injection of human variants in “humanized” mice followed 

by longitudinal collection of serum for cytokine measurement using a human 
TH1/TH2 MSD cytokine panel
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Serum cytokine response after subcutaneous injection of half-life 
enhanced IL-18BP resistant human IL-18 variant
• Human variants stimulated a durable TH1 dominant cytokine response after 

subcutaneous injection in humanized mice
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*
serum levels below limit of detection 
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